skip to main content


Search for: All records

Creators/Authors contains: "Chowdhury, Sugata"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Materials Genome Initiative (MGI) has streamlined the materials discovery effort by leveraging generic traits of materials, with focus largely on perfect solids. Defects such as impurities and perturbations, however, drive many attractive functional properties of materials. The rich tapestry of charge, spin, and bonding states hosted by defects are not accessible to elements and perfect crystals, and defects can thus be viewed as another class of “elements” that lie beyond the periodic table. Accordingly, a Defect Genome Initiative (DGI) to accelerate functional defect discovery for energy, quantum information, and other applications is proposed. First, major advances made under the MGI are highlighted, followed by a delineation of pathways for accelerating the discovery and design of functional defects under the DGI. Near‐term goals for the DGI are suggested. The construction of open defect platforms and design of data‐driven functional defects, along with approaches for fabrication and characterization of defects, are discussed. The associated challenges and opportunities are considered and recent advances towards controlled introduction of functional defects at the atomic scale are reviewed. It is hoped this perspective will spur a community‐wide interest in undertaking a DGI effort in recognition of the importance of defects in enabling unique functionalities in materials.

     
    more » « less
  2. Two-dimensional (2D) materials that exhibit charge density waves (CDWs)—spontaneous reorganization of their electrons into a periodic modulation—have generated many research endeavors in the hopes of employing their exotic properties for various quantum-based technologies. Early investigations surrounding CDWs were mostly focused on bulk materials. However, applications for quantum devices require few-layer materials to fully utilize the emergent phenomena. The CDW field has greatly expanded over the decades, warranting a focus on the computational efforts surrounding them specifically in 2D materials. In this review, we cover ground in the following relevant theory-driven subtopics for TaS2 and TaSe2: summary of general computational techniques and methods, resulting atomic structures, the effect of electron–phonon interaction of the Raman scattering modes, the effects of confinement and dimensionality on the CDW, and we end with a future outlook. Through understanding how the computational methods have enabled incredible advancements in quantum materials, one may anticipate the ever-expanding directions available for continued pursuit as the field brings us through the 21st century. 
    more » « less
  3. Abstract

    We demonstrate that the introduction of an elemental beam of Mn during the molecular beam epitaxial growth of Bi2Se3results in the formation of layers of Bi2MnSe4that intersperse between layers of pure Bi2Se3. This study revises the assumption held by many who study magnetic topological insulators (TIs) that Mn incorporates randomly at Bi-substitutional sites during epitaxial growth of Mn:Bi2Se3. Here, we report the formation of thin film magnetic TI Bi2MnSe4with stoichiometric composition that grows in a self-assembled multilayer heterostructure with layers of Bi2Se3, where the number of Bi2Se3layers separating the single Bi2MnSe4layers is approximately defined by the relative arrival rate of Mn ions to Bi and Se ions during growth, and we present its compositional, structural, and electronic properties. We support a model for the epitaxial growth of Bi2MnSe4in a near-periodic self-assembled layered heterostructure with Bi2Se3with corresponding theoretical calculations of the energetics of this material and those of similar compositions. Computationally derived electronic structure of these heterostructures demonstrates the existence of topologically nontrivial surface states at sufficient thickness.

     
    more » « less